Posted by : Unknown
Senin, 23 Desember 2013
Persamaan Linear dengan Matriks
Persamaan linear dapat dinyatakan sebagai matriks. Misalnya persamaan:- 3x1 + 4x2 − 2x3 = 5
- x1 − 5x2 + 2x3 = 7
- 2x1 + x2 − 3x3 = 9
Penyelesaian persamaan linier dalam bentuk matriks dapat dilakukan melalui beberapa cara, yaitu dengan eliminasi Gauss atau dapat juga dengan cara eliminasi Gauss-Jordan. Namun, suatu sistem persamaan linier dapat diselesaikan dengan eliminasi Gauss untuk mengubah bentuk matriks teraugmentasi ke dalam bentuk eselon-baris tanpa menyederhanakannya. Cara ini disebut dengan substitusi balik.
Sebuah sisitem persamaan linier dapat dikatakan homogen apabila mempunyai bentuk :
- a11x1 + a12x2 + ... + a1nxn = 0
- a21x1 + a22x2 + ... + a2nxn = 0
- am1x1 + am2x2 + ... + amnxn = 0
Penyelesaian Persamaan Linear dengan Matriks
Bentuk Eselon-baris
Matriks dapat dikatakan Eselon-baris apabila memenuhi persyaratan berikut :- Di setiap baris, angka pertama selain 0 harus 1 (leading 1).
- Jika ada baris yang semua elemennya nol, maka harus dikelompokkan di baris akhir dari matriks.
- Jika ada baris yang leading 1 maka leading 1 di bawahnya, angka 1-nya harus berada lebih kanan dari leading 1 di atasnya.
- Jika kolom yang memiliki leading 1 angka selain 1 adalah nol maka matriks tersebut disebut Eselon-baris tereduksi
- syarat 1: baris pertama disebut dengan leading 1
- syarat 2: baris ke-3 dan ke-4 memenuhi syarat 2
- syarat 3: baris pertama dan ke-2 memenuhi syarat 3
- syarat 4: matriks dibawah ini memenuhi syarat ke 4 dan disebut Eselon-baris tereduksi
Operasi Eliminasi Gauss
Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah dengan melakukan operasi baris sehingga matriks tersebut menjadi matriks yang Eselon-baris. Ini dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam matriks teraugmentasi dan mengoperasikannya. Setelah menjadi matriks Eselon-baris, lakukan substitusi balik untuk mendapatkan nilai dari variabel-variabel tersebut.Contoh: Diketahui persamaan linear
Jawab: Bentuk persamaan tersebut ke dalam matriks:
B1 x 1 , Untuk mengubah a11 menjadi 1
B2 - 1.B1 , Untuk mengubah a21 menjadi 0
B3 - 2.B1 , Untuk mengubah a31 menjadi 0
B2 x 1 , Untuk mengubah a22 menjadi 1
B3 + 3.B2 , Untuk mengubah a32 menjadi 0
B3 x 1/3 , Untuk mengubah a33 menjadi 1 (Matriks menjadi Eselon-baris)
Maka mendapatkan 3 persamaan linier baru yaitu